

Smart Data Analytics Platform for Science

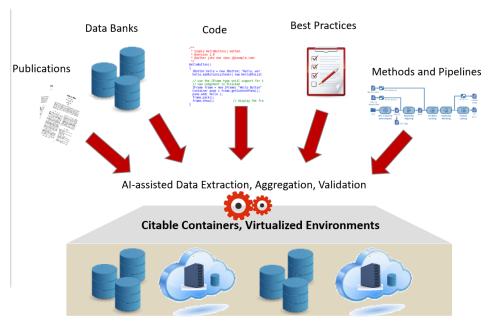
ECRMA Short Talks 12.02.2018

Taghi Aliyev

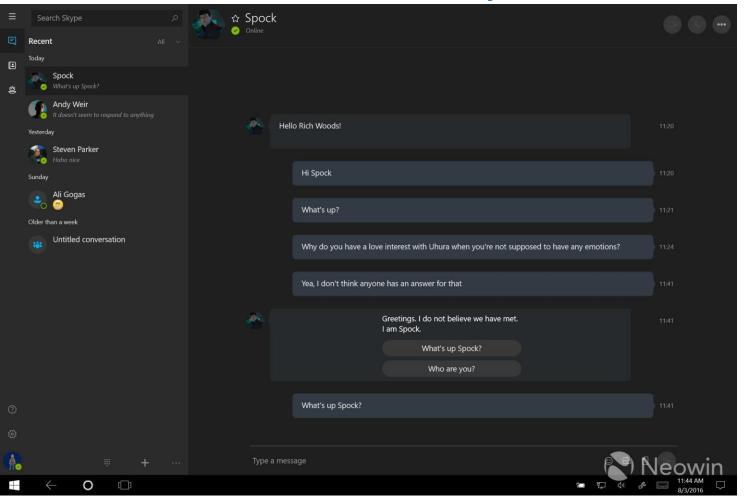
12/02/2018

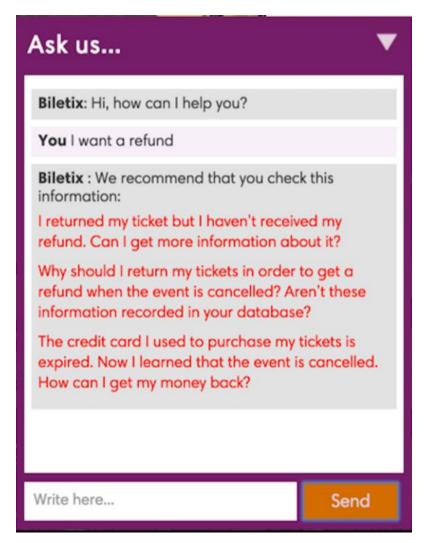
Outline

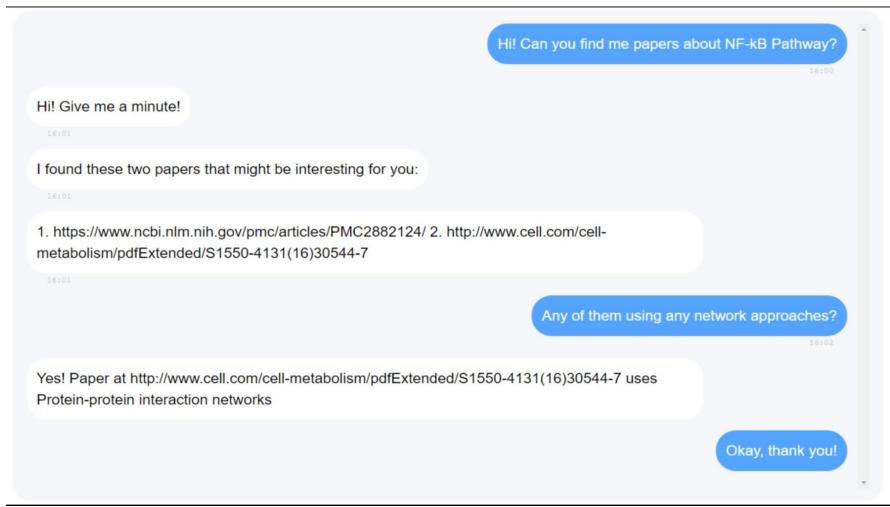
- Background and Motivation
- Introduction to the Platform
- Chatbots and Natural Language Processing
- Use Cases and the initial Core Team
- Future Work


Background and Motivation

- A lot of replicative work in Life Sciences
 - Non-reproducible research
 - Many different data structures and conventions → Need for parsers...
- High barriers to enter the research fields
- Lack of common ground, all-in-one environments
- Sparked out off discussion with the members of Medical Community
 - Genomics Analysis Experts, Professors in Bio-Informatics, personal experiences


Introduction to the Platform


- Large-scale collaborative research platform
- Main focus on ease-of-use, reproducibility of research
- Use of Machine Learning for Narrative interfaces
 - Information Retrieval
 - Natural Language Processing (Chatbots)
- Provide and host in-house solutions and projects


Chat bots – As seen commonly

Chatbots – How we see it

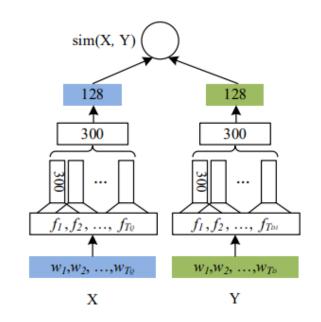
Chatbots and Information Retrieval

- Lower the barriers for junior researchers
- Enhance the way research is done for everyone
- Chatbots as Personal Assistants
- Information Retrieval:
 - Open vs Closed-Domain Retrieval

Open vs Closed-Domain

- Two subgroups of relevant tasks:
 - Open Domain: Global Knowledge-based Information Retrieval
 - Closed Domain: Scan a given text/publication to find an answer to specific query
- Researched separately
- Open-domain for any generic queries and questions
- Closed-domain for training and newcomers

Open Domain based models


- Latest advancements focus on uses of Deep Neural Network models and Logic Graphs
- Different tasks being solved with different DNN models:
 - Machine Translation
 - Topic Identification
 - Information Retrieval
- Our initial interests focus on Information Retrieval and Response Generation
- DSSM as current model that is being investigated
 - Deep Semantic Similarity Measure Model (Shen, 2014)

Open Domain based models

- Cosine Similarity in Semantic Space
- Fits a model to maximize the distance between query and irrelevant documents while minimizing the distance to relevant ones:
 - $\Delta = \sin_{\theta}(X, Y^+) \sin_{\theta}(X, Y^-)$

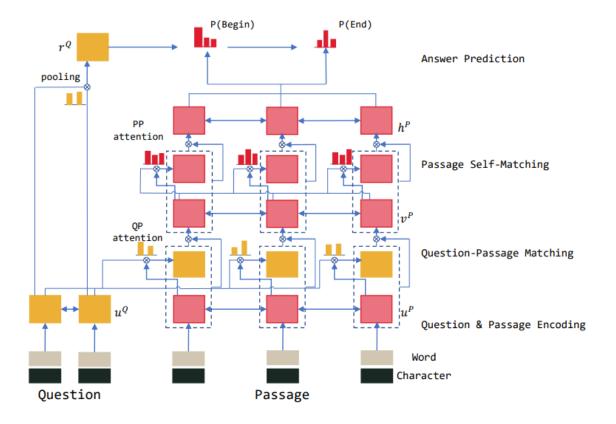
	Relevance measured by cosine similarity	
	Semantic layer	h
$\frac{1}{2}$	Max pooling layer	v
	Convolutional layer	c_t
	Word hashing layer	f_t
1	Word sequence	x_t
l		

Learning: maximize the similarity between X (source) and Y (target)

Representation: use DNN to extract abstract semantic representations

Convolutional and Max-pooling layer: identify key words/concepts in X and Y

Word hashing: use sub-word unit (e.g., letter *n*-gram) as raw input to handle very large vocabulary


Closed Domain based models

- Gathered interest in last 2-3 years
- Generation of SQuAD Dataset¹ and Google NIPS 2015² paper as main sparking points
- More specialized answer generation task
 - Focus on single passage of text/publication
 - Questions do not always hold answers in the given text
- SQuAD Challenge still ongoing
 - Recent models outperforming humans on specific Measures

Closed Domain based models

R-net¹ the most popular and better performing model

What are the current challenges?

- Current benchmarks focus on news articles or more factual knowledge
- Lack of Data sets and benchmarks for scientific publications
 - Need for compilation of large data sets for use in Deep NLP
 - Currently investigating automated ways of generating labeled Data Sets
- Plenty of room to improve on model performances
- Current models also require a higher level of connections due to the complex nature of scientific publications and facts

Use Cases

How to achieve initial designs?

- Core team concept
- Minimal Viable Platform
 - To initiate the future talks and the iterative process
- Generate an awareness
- Two ongoing and two upcoming projects:
 - Ongoing: KCL + SIDRA on benchmarking of CNV tools. Maastricht University: Target Lipid Identification
 - Upcoming: EBI and Cambridge University

Future Tasks

- Design and Implementation of Minimal Viable Platform
 - Together with Community members
- Machine Generated Benchmark Data Sets
- Testing of Initial NLP Models on the Generated Cases
- Deployment of the Modules together with other CERN Technologies for a more completed prototype

Taghi.aliyev@cern.ch Twitter: @TaghiAliyev

Backup Slides

Background and Motivation

Example – Target Lipid Exploration

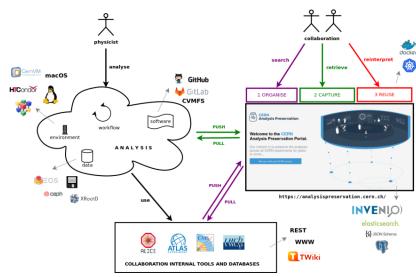
- Project with Maastricht University
 - Goal is to find relevant target lipids for better modeling and explanation of CVD
- Data consists of a lot of missing values
 - Machine Learning approaches used to deal with different multiple issues (Imputation, Overfitting, Classification)
- Currently, no available software to look for relevant publications within a field
 - Requires a lot of manual search and comprehension
 - Similarly for the identified Lipids as well

What do we mean as a Platform

- Idea is to not just provide tools to researchers
- Powerful ecosystem
 - Challenge the value chain and the ideas
- Focus on the 'why' of things rather than 'how-do'
 - Enhance the way research is done

CERN Technologies

- Zenodo


Data Base of Publications and Presentations with links to social media

- CVMFS

- Storage and distribution of tools and software

- REANA

- Orchestration layer of the platform
- Working closely with the team and Tibor Simko

Quick Introduction

- Field of AI focusing on human interaction and understanding human (natural) language
- In last years, approach to NLP Tasks have changed from classical pipelines
- Deep Neural Network Models as the new approach

